Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.592
1.
World J Gastroenterol ; 30(14): 1934-1940, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38681121

Olympus Corporation developed texture and color enhancement imaging (TXI) as a novel image-enhancing endoscopic technique. This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting. A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate (ADR) and the mean number of adenomas per procedure (MAP) of TXI compared with those of white-light imaging (WLI) observation (58.7% vs 42.7%, adjusted relative risk 1.35, 95%CI: 1.17-1.56; 1.36 vs 0.89, adjusted incident risk ratio 1.48, 95%CI: 1.22-1.80, respectively). A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI (1.5 vs 1.0, adjusted odds ratio 1.4, 95%CI: 1.2-1.6; 58.2% vs 46.8%, 1.5, 1.0-2.3, respectively). A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure (0.29 vs 0.30, difference for non-inferiority -0.01, 95%CI: -0.10 to 0.08). A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis. A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI (0.71% vs 0.29%). A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI (69.2% vs 52.5% and 85.3% vs 78.7%, respectively). In conclusion, TXI can improve gastrointestinal lesion detection and qualitative diagnosis. Therefore, further studies on the efficacy of TXI in clinical practice are required.


Gastrointestinal Diseases , Humans , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/pathology , Image Enhancement/methods , Adenoma/diagnostic imaging , Adenoma/pathology , Narrow Band Imaging/methods , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Colonoscopy/methods , Color
2.
Comput Biol Med ; 175: 108410, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678938

Latent diffusion models (LDMs) have emerged as a state-of-the-art image generation method, outperforming previous Generative Adversarial Networks (GANs) in terms of training stability and image quality. In computational pathology, generative models are valuable for data sharing and data augmentation. However, the impact of LDM-generated images on histopathology tasks compared to traditional GANs has not been systematically studied. We trained three LDMs and a styleGAN2 model on histology tiles from nine colorectal cancer (CRC) tissue classes. The LDMs include 1) a fine-tuned version of stable diffusion v1.4, 2) a Kullback-Leibler (KL)-autoencoder (KLF8-DM), and 3) a vector quantized (VQ)-autoencoder deploying LDM (VQF8-DM). We assessed image quality through expert ratings, dimensional reduction methods, distribution similarity measures, and their impact on training a multiclass tissue classifier. Additionally, we investigated image memorization in the KLF8-DM and styleGAN2 models. All models provided a high image quality, with the KLF8-DM achieving the best Frechet Inception Distance (FID) and expert rating scores for complex tissue classes. For simpler classes, the VQF8-DM and styleGAN2 models performed better. Image memorization was negligible for both styleGAN2 and KLF8-DM models. Classifiers trained on a mix of KLF8-DM generated and real images achieved a 4% improvement in overall classification accuracy, highlighting the usefulness of these images for dataset augmentation. Our systematic study of generative methods showed that KLF8-DM produces the highest quality images with negligible image memorization. The higher classifier performance in the generatively augmented dataset suggests that this augmentation technique can be employed to enhance histopathology classifiers for various tasks.


Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Algorithms
3.
Medicine (Baltimore) ; 103(15): e37827, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608072

BACKGROUND: Radiomics has shown great potential in the clinical field of colorectal cancer (CRC). However, few bibliometric studies have systematically analyzed existing research in this field. The purpose of this study is to understand the current research status and future development directions of CRC. METHODS: Search the English documents on the application of radiomics in the field of CRC research included in the Web of Science Core Collection from its establishment to October 2023. VOSviewer and CiteSpace software were used to conduct bibliometric and visual analysis of online publications related to countries/regions, authors, journals, references, and keywords in this field. RESULTS: A total of 735 relevant documents published from Web of Science Core Collection to October 2023 were retrieved, and a total of 419 documents were obtained based on the screening criteria, including 376 articles and 43 reviews. The number of publications is increasing year by year. Among them, China publishes the most relevant documents (n = 238), which is much higher than Italy (n = 69) and the United States (n = 63). Tian Jie is the author with the most publications and citations (n = 17, citations = 2128), GE Healthcare is the most productive institution (n = 26), Frontiers in Oncology is the journal with the most publications (n = 60), and European Radiology is the most cited journal (n = 776). Hot spots for the application of radiomics in CRC include magnetic resonance, neoadjuvant chemoradiotherapy, survival, texture analysis, and machine learning. These directions are the current hot spots for the application of radiomics research in CRC and may be the direction of continued development in the future. CONCLUSION: Through bibliometric analysis, the application of radiomics in CRC has been increasing year by year. The application of radiomics improves the accuracy of preoperative diagnosis, prediction, and prognosis of CRC. The results of bibliometrics analysis provide a valuable reference for the research direction of radiomics. However, radiomics still faces many challenges in the future, such as the single nature of the data source which may affect the comprehensiveness of the results. Future studies can further expand the data sources and build a multicenter public database to more comprehensively reflect the research status and development trend of CRC radiomics.


Colorectal Neoplasms , Dermatitis , Humans , Bibliometrics , China , Colorectal Neoplasms/diagnostic imaging , Databases, Factual , Radiomics
4.
Discov Med ; 36(183): 765-777, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665025

PURPOSE: To investigate the post-radiofrequency ablation (RFA) magnetic resonance imaging (MRI) characteristics in patients with liver metastases from colorectal cancer and to build a predictive model for local tumor progression based on these imaging markers. MATERIALS AND METHODS: A cohort of 73 patients with 110 colorectal cancer liver metastases (CRCLM) who underwent RFA and MRI one month post-ablation was included in image signs analysis and predictive model training. Using a newly developed MRI appearance scoring criteria, MR Image Appearance Scoring at One Month after RFA (MRIAS 1MO), the semi-quantitative analysis of MRI findings within the ablation zone were conducted independently by two radiologists. The intraclass correlation coefficient (ICC) was calculated to evaluate measurement reliability. Differences in MRIAS 1MO scores were compared using Mann-Whitney U test, focusing on local tumor response outcomes. Using local tumor progression (LTP) as the primary end point, MRIAS 1MO scores and other lesion morphological and clinical characteristics were included to establish predictive model. Predication accuracy was subsequently evaluated using calibration curve, time-dependent concordance index (C index) curve, and LTP-free survival (LTPFS) curve. Another cohort comprising 60 patients with 76 CRCLMs provided additional MRIAS 1MO scores and clinical data associated with LTP. We evaluated the performance of the established predictive model using calibration curve, time-dependent C index curve, and LTPFS curve. RESULTS: The MRIAS 1MO criteria exhibited strong measurement reliability. The ICC values of T1S (scores from T1WI), T2S (scores form T2WI) and NCES (scores by adding T1S to T2S) MRIS (the overall scores) were 0.825, 0.779, 0.826 and 0.873, respectively. Lesions with LTP showed significantly higher median values for the overall MRIAS 1MO score (MRIS) compared to lesions without LTP (16 vs. 12, p < 0.001). MRIS and lesion diameter were independent prognostic factors of LTP and were included in predictive model (hazard ratio: MRIS over 13.5:4.275, lesion diameter larger than 30 mm: 2.056). The predictive model demonstrated an overall C index of 0.721 and risk stratification using the predictive model resulted in significantly different LPTFS times. In the validation cohort, the C index were 0.825, 0.794 and 0.764 at six, twelve and twenty-four months, respectively. Patients classified as high-risk in the validation cohort had a median LTPFS time of 10.0 months, while the median LTPFS time was not reached in the low-risk group. CONCLUSIONS: The semi-quantitative MRIAS 1MO criteria, used for post-RFA MRI appearance analysis, exhibited strong measurement reliability. Prediction models established based on overall MRIAS 1MO score (MRIS) and lesion diameter had good predictive performance for LTP in patients undergoing RFA for CRCLM treatment.


Colorectal Neoplasms , Disease Progression , Liver Neoplasms , Magnetic Resonance Imaging , Radiofrequency Ablation , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Aged , Radiofrequency Ablation/methods , Adult , Retrospective Studies , Aged, 80 and over
5.
Comput Biol Med ; 174: 108389, 2024 May.
Article En | MEDLINE | ID: mdl-38593640

PURPOSE: To evaluate the potential of synthetic radiomic data generation in addressing data scarcity in radiomics/radiogenomics models. METHODS: This study was conducted on a retrospectively collected cohort of 386 colorectal cancer patients (n = 2570 lesions) for whom matched contrast-enhanced CT images and gene TP53 mutational status were available. The full cohort data was divided into a training cohort (n = 2055 lesions) and an independent and fixed test set (n = 515 lesions). Differently sized training sets were subsampled from the training cohort to measure the impact of sample size on model performance and assess the added value of synthetic radiomic augmentation at different sizes. Five different tabular synthetic data generation models were used to generate synthetic radiomic data based on "real-world" radiomics data extracted from this cohort. The quality and reproducibility of the generated synthetic radiomic data were assessed. Synthetic radiomics were then combined with "real-world" radiomic training data to evaluate their impact on the predictive model's performance. RESULTS: A prediction model was generated using only "real-world" radiomic data, revealing the impact of data scarcity in this particular data set through a lack of predictive performance at low training sample numbers (n = 200, 400, 1000 lesions with average AUC = 0.52, 0.53, and 0.56 respectively, compared to 0.64 when using 2055 training lesions). Synthetic tabular data generation models created reproducible synthetic radiomic data with properties highly similar to "real-world" data (for n = 1000 lesions, average Chi-square = 0.932, average basic statistical correlation = 0.844). The integration of synthetic radiomic data consistently enhanced the performance of predictive models trained with small sample size sets (AUC enhanced by 9.6%, 11.3%, and 16.7% for models trained on n_samples = 200, 400, and 1000 lesions, respectively). In contrast, synthetic data generated from randomised/noisy radiomic data failed to enhance predictive performance underlining the requirement of true signal data to do so. CONCLUSION: Synthetic radiomic data, when combined with real radiomics, could enhance the performance of predictive models. Tabular synthetic data generation might help to overcome limitations in medical AI stemming from data scarcity.


Colorectal Neoplasms , Tomography, X-Ray Computed , Humans , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Female , Male , Tomography, X-Ray Computed/methods , Retrospective Studies , Middle Aged , Aged , Genomics , Tumor Suppressor Protein p53/genetics , Radiomics
6.
Comput Biol Med ; 173: 108293, 2024 May.
Article En | MEDLINE | ID: mdl-38574528

Accurately identifying the Kirsten rat sarcoma virus (KRAS) gene mutation status in colorectal cancer (CRC) patients can assist doctors in deciding whether to use specific targeted drugs for treatment. Although deep learning methods are popular, they are often affected by redundant features from non-lesion areas. Moreover, existing methods commonly extract spatial features from imaging data, which neglect important frequency domain features and may degrade the performance of KRAS gene mutation status identification. To address this deficiency, we propose a segmentation-guided Transformer U-Net (SG-Transunet) model for KRAS gene mutation status identification in CRC. Integrating the strength of convolutional neural networks (CNNs) and Transformers, SG-Transunet offers a unique approach for both lesion segmentation and KRAS mutation status identification. Specifically, for precise lesion localization, we employ an encoder-decoder to obtain segmentation results and guide the KRAS gene mutation status identification task. Subsequently, a frequency domain supplement block is designed to capture frequency domain features, integrating it with high-level spatial features extracted in the encoding path to derive advanced spatial-frequency domain features. Furthermore, we introduce a pre-trained Xception block to mitigate the risk of overfitting associated with small-scale datasets. Following this, an aggregate attention module is devised to consolidate spatial-frequency domain features with global information extracted by the Transformer at shallow and deep levels, thereby enhancing feature discriminability. Finally, we propose a mutual-constrained loss function that simultaneously constrains the segmentation mask acquisition and gene status identification process. Experimental results demonstrate the superior performance of SG-Transunet over state-of-the-art methods in discriminating KRAS gene mutation status.


Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Drug Delivery Systems , Mutation/genetics , Neural Networks, Computer , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Image Processing, Computer-Assisted
7.
BMC Med Imaging ; 24(1): 77, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566000

BACKGROUND: To investigate the value of a nomogram model based on the combination of clinical-CT features and multiphasic enhanced CT radiomics for the preoperative prediction of the microsatellite instability (MSI) status in colorectal cancer (CRC) patients. METHODS: A total of 347 patients with a pathological diagnosis of colorectal adenocarcinoma, including 276 microsatellite stabilized (MSS) patients and 71 MSI patients (243 training and 104 testing), were included. Univariate and multivariate regression analyses were used to identify the clinical-CT features of CRC patients linked with MSI status to build a clinical model. Radiomics features were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Different radiomics models for the single phase and multiphase (three-phase combination) were developed to determine the optimal phase. A nomogram model that combines clinical-CT features and the optimal phasic radscore was also created. RESULTS: Platelet (PLT), systemic immune inflammation index (SII), tumour location, enhancement pattern, and AP contrast ratio (ACR) were independent predictors of MSI status in CRC patients. Among the AP, VP, DP, and three-phase combination models, the three-phase combination model was selected as the best radiomics model. The best MSI prediction efficacy was demonstrated by the nomogram model built from the combination of clinical-CT features and the three-phase combination model, with AUCs of 0.894 and 0.839 in the training and testing datasets, respectively. CONCLUSION: The nomogram model based on the combination of clinical-CT features and three-phase combination radiomics features can be used as an auxiliary tool for the preoperative prediction of the MSI status in CRC patients.


Colorectal Neoplasms , Nomograms , Humans , Microsatellite Instability , Radiomics , Retrospective Studies , Tomography, X-Ray Computed/methods , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery
10.
J Cancer Res Ther ; 20(2): 599-607, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38687930

OBJECTIVE: It is crucially essential to differentially diagnose single-nodule pulmonary metastases (SNPMs) and second primary lung cancer (SPLC) in patients with colorectal cancer (CRC), which has important clinical implications for treatment strategies. In this study, we aimed to establish a feasible differential diagnosis model by combining 18F-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) radiomics, computed tomography (CT) radiomics, and clinical features. MATERIALS AND METHODS: CRC patients with SNPM or SPLC who underwent 18F-FDG PET/CT from January 2013 to July 2022 were enrolled in this retrospective study. The radiomic features were extracted by manually outlining the lesions on PET/CT images, and the radiomic modeling was realized by various screening methods and classifiers. In addition, clinical features were analyzed by univariate analysis and logistic regression (LR) analysis to be included in the combined model. Finally, the diagnostic performances of these models were illustrated by the receiver operating characteristic (ROC) curves and the area under the curve (AUC). RESULTS: We studied data from 61 patients, including 36 SNPMs and 25 SPLCs, with an average age of 65.56 ± 10.355 years. Spicule sign and ground-glass opacity (GGO) were significant independent predictors of clinical features (P = 0.012 and P < 0.001, respectively) to build the clinical model. We achieved a PET radiomic model (AUC = 0.789), a CT radiomic model (AUC = 0.818), and a PET/CT radiomic model (AUC = 0.900). The PET/CT radiomic models were combined with the clinical model, and a well-performing model was established by LR analysis (AUC = 0.940). CONCLUSIONS: For CRC patients, the radiomic models we developed had good performance for the differential diagnosis of SNPM and SPLC. The combination of radiomic and clinical features had better diagnostic value than a single model.


Colorectal Neoplasms , Fluorodeoxyglucose F18 , Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Diagnosis, Differential , Middle Aged , Aged , Retrospective Studies , Neoplasms, Second Primary/diagnostic imaging , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/diagnosis , ROC Curve , Radiopharmaceuticals , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Adult , Radiomics
11.
Talanta ; 274: 126018, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38593645

Colorectum cancer has become one of the most fatal cancer diseases, in which NAD(P)H: quinone oxidoreductase 1 (NQO1) plays a role in intracellular free radical reduction and detoxification and has been linked to colorectum cancer and chemotherapy resistance. Therefore, rational design of optical probe for NQO1 detection is urgent for the early diagnosis of colorectum cancer. Herein, we have developed a novel two-photon fluorescent probe, WHFD, which is capable of selectively detecting of intracellular NQO1 with two-photon (TP) absorption (800 nm) and near-infrared emission (620 nm). Combination with a substantial Stokes shift (175 nm) and biocompatibility, we have assessed its suitability for in vivo imaging of endogenous NQO1 activities from HepG2 tumor-bearing live animals with high tissue penetration up to 300 µm. Particularly, we for the first time used the probe to image NQO1 activities from human colorectum cancer samples by using TP microscopy, and proving our probe possesses reliable diagnostic performance to directly in situ imaging of cancer biomarker and can clearly distinguish the boundary between human colorectum cancer tissue and their surrounding normal tissue, which shows great potential for the intraoperative navigation.


Colorectal Neoplasms , Fluorescent Dyes , NAD(P)H Dehydrogenase (Quinone) , Photons , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/analysis , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Animals , Hep G2 Cells , Optical Imaging , Infrared Rays , Mice , Mice, Nude
12.
Eur J Cancer ; 202: 114020, 2024 May.
Article En | MEDLINE | ID: mdl-38502988

BACKGROUND: This retrospective study determined survival responses to immune checkpoint inhibitors (ICIs), comparing mono- (mono) and combo-immunotherapy (combo) in patients with microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC) by analyzing quantitative imaging data and clinical factors. METHODS: One hundred fifty patients were included from two centers and divided into training (n = 105) and validation (n = 45) cohorts. Radiologists manually annotated chest-abdomen-pelvis computed tomography and calculated tumor burden. Progression-free survival (PFS) was assessed, and variables were selected through Recursive Feature Elimination. Cutoff values were determined using maximally selected rank statistics to binarize features, forming a risk score with hazard ratio-derived weights. RESULTS: In total, 2258 lesions were annotated with excellent reproducibility. Key variables in the training cohort included: total tumor volume (cutoff: 73 cm3), lesion count (cutoff: 20), age (cutoff: 60) and the presence of peritoneal carcinomatosis. Their respective weights were 1.13, 0.96, 0.91, and 0.38, resulting in a risk score cutoff of 1.36. Low-score patients showed similar overall survival and PFS regardless of treatment, while those with a high-score had significantly worse survivals with mono vs combo (P = 0.004 and P = 0.0001). In the validation set, low-score patients exhibited no significant difference in overall survival and PFS with mono or combo. However, patients with a high-score had worse PFS with mono (P = 0.046). CONCLUSIONS: A score based on total tumor volume, lesion count, the presence of peritoneal carcinomatosis, and age can guide MSI-H mCRC treatment decisions, allowing oncologists to identify suitable candidates for mono and combo ICI therapies.


Colonic Neoplasms , Colorectal Neoplasms , Peritoneal Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Peritoneal Neoplasms/drug therapy , Retrospective Studies , Reproducibility of Results , Colonic Neoplasms/drug therapy , Microsatellite Instability , DNA Mismatch Repair
13.
Nanoscale ; 16(14): 7185-7199, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38506227

Theranostic nanoparticles hold promise for simultaneous imaging and therapy in colorectal cancer. Carcinoembryonic antigen can be used as a target for these nanoparticles because it is overexpressed in most colorectal cancers. Affimer reagents are synthetic proteins capable of binding specific targets, with additional advantages over antibodies for targeting. We fabricated silica nanoparticles using a water-in-oil microemulsion technique, loaded them with the photosensitiser Foslip, and functionalised the surface with anti-CEA Affimers to facilitate fluorescence imaging and photodynamic therapy of colorectal cancer. CEA-specific fluorescence imaging and phototoxicity were quantified in colorectal cancer cell lines and a LS174T murine xenograft colorectal cancer model. Anti-CEA targeted nanoparticles exhibited CEA-specific fluorescence in the LoVo, LS174T and HCT116 cell lines when compared to control particles (p < 0.0001). No toxicity was observed in LS174T cancer mouse xenografts or other organs. Following photo-irradiation, the anti-CEA targeted particles caused significant cell death in LoVo (60%), LS174T (90%) and HCT116 (70%) compared to controls (p < 0.0001). Photodynamic therapy (PDT) at 24 h in vivo showed a 4-fold reduction in tumour volume compared to control mouse xenografts (p < 0.0001). This study demonstrates the efficacy of targeted fluorescence imaging and PDT using Foslip nanoparticles conjugated to anti-CEA Affimer nanoparticles in in vitro and in vivo colorectal cancer models.


Colorectal Neoplasms , Mesoporphyrins , Nanoparticles , Humans , Animals , Mice , Carcinoembryonic Antigen , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cell Line, Tumor , Nanoparticles/therapeutic use
14.
Comput Methods Programs Biomed ; 248: 108119, 2024 May.
Article En | MEDLINE | ID: mdl-38520785

BACKGROUND AND OBJECTIVE: Image segmentation of histopathology of colorectal cancer is a core task of computer aided medical image diagnosis system. Existing convolutional neural networks generally extract multi-scale information in linear flow structures by inserting multi-branch modules, which is difficult to extract heterogeneous semantic information under multi-level and different receptive field and tough to establish context dependency among different receptive field features. METHODS: To address these issues, we propose a symmetric spiral progressive feature fusion encoder-decoder network called the Symmetric Conical Network (SC-Net). First, we design a Multi-scale Feature Extraction Block (MFEB) matching with the Symmetric Conical Network to obtain multi-branch heterogeneous semantic information under different receptive fields, so as to enrich the diversity of extracted feature information. The encoder is composed of MFEB through spiral and multi-branch arrangement to enhance context dependence between different information flow. Secondly, the information loss of contour, color and others in high-level semantic information through causally stacking MFEB, the Feature Mapping Layer (FML) is designed to map low-level features to high-level semantic features along the down-sampling branch and solve the problem of insufficient global feature extraction in deep levels. RESULTS: The SC-Net was evaluated on our self-constructed colorectal cancer dataset, a publicly available breast cancer dataset and a polyp dataset. The results revealed that the mDice of segmentation reached 0.8611, 0.7259 and 0.7144. We compare our model with the state-of-art semantic segmentation UNet++, PSPNet, Attention U-Net, R2U-Net and other advanced segmentation networks. The experimental results demonstrate that we achieve the most advanced performance. CONCLUSIONS: The results indicate that the proposed SC-Net excels in segmenting H&E stained pathology images, effectively preserving morphological features and spatial information even in scenarios with weak texture, poor contrast, and variations in appearance.


Colorectal Neoplasms , Polyps , Humans , Diagnosis, Computer-Assisted , Neural Networks, Computer , Semantics , Colorectal Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted
15.
IEEE J Biomed Health Inform ; 28(3): 1528-1539, 2024 Mar.
Article En | MEDLINE | ID: mdl-38446655

Colorectal cancer is a prevalent and life-threatening disease, where colorectal cancer liver metastasis (CRLM) exhibits the highest mortality rate. Currently, surgery stands as the most effective curative option for eligible patients. However, due to the insufficient performance of traditional methods and the lack of multi-modality MRI feature complementarity in existing deep learning methods, the prognosis of CRLM surgical resection has not been fully explored. This paper proposes a new method, multi-modal guided complementary network (MGCNet), which employs multi-sequence MRI to predict 1-year recurrence and recurrence-free survival in patients after CRLM resection. In light of the complexity and redundancy of features in the liver region, we designed the multi-modal guided local feature fusion module to utilize the tumor features to guide the dynamic fusion of prognostically relevant local features within the liver. On the other hand, to solve the loss of spatial information during multi-sequence MRI fusion, the cross-modal complementary external attention module designed an external mask branch to establish inter-layer correlation. The results show that the model has accuracy (ACC) of 0.79, the area under the curve (AUC) of 0.84, C-Index of 0.73, and hazard ratio (HR) of 4.0, which is a significant improvement over state-of-the-art methods. Additionally, MGCNet exhibits good interpretability.


Colorectal Neoplasms , Liver Neoplasms , Humans , Prognosis , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Magnetic Resonance Imaging , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/surgery
16.
Arq Gastroenterol ; 61: e23062, 2024.
Article En | MEDLINE | ID: mdl-38451659

BACKGROUND: Colorectal cancer is one of the most prevalent pathologies worldwide whose prognosis is linked to early detection. Colonoscopy is the gold standard for screening, and diagnosis is usually made histologically from biopsies. Aiming to reduce the inspection and diagnostic time as well as the biopsies and resources involved, other techniques are being promoted to conduct accurate in vivo colonoscopy assessments. Optical biopsy aims to detect normal and neoplastic tissues analysing the autofluorescence spectrum based on the changes in the distribution and concentration of autofluorescent molecules caused by colorectal cancer. Therefore, the autofluorescence contribution analysed by image processing techniques could be an approach to a faster characterization of the target tissue. OBJECTIVE: Quantify intensity parameters through digital processing of two data sets of three-dimensional widefield autofluorescence microscopy images, acquired by fresh colon tissue samples from a colorectal cancer murine model. Additionally, analyse the autofluorescence data to provide a characterization over a volume of approximately 50 µm of the colon mucosa for each image, at second (2nd), fourth (4th) and eighth (8th) weeks after colorectal cancer induction. METHODS: Development of a colorectal cancer murine model using azoxymethane/dextran sodium sulphate induction, and data sets acquisition of Z-stack images by widefield autofluorescence microscopy, from control and colorectal cancer induced animals. Pre-processing steps of intensity value adjustments followed by quantification and characterization procedures using image processing workflow automation by Fiji's macros, and statistical data analysis. RESULTS: The effectiveness of the colorectal cancer induction model was corroborated by a histological assessment to correlate and validate the link between histological and autofluorescence changes. The image digital processing methodology proposed was then performed on the three-dimensional images from control mice and from the 2nd, 4th, and 8th weeks after colorectal cancer chemical induction, for each data set. Statistical analyses found significant differences in the mean, standard deviation, and minimum parameters between control samples and those of the 2nd week after induction with respect to the 4th week of the first experimental study. This suggests that the characteristics of colorectal cancer can be detected after the 2nd week post-induction. CONCLUSION: The use of autofluorescence still exhibits levels of variability that prevent greater systematization of the data obtained during the progression of colorectal cancer. However, these preliminary outcomes could be considered an approach to the three-dimensional characterization of the autofluorescence of colorectal tissue, describing the autofluorescence features of samples coming from dysplasia to colorectal cancer. BACKGROUND: • A new digital image processing method was developed to measure intensity in 3D autofluorescence images of colorectal samples using a CRC mouse model. BACKGROUND: • This method showed that autofluorescence intensity in colon mucosa is similar in healthy tissue but changes significantly in tumor development. BACKGROUND: • Statistical analysis revealed CRC traits detectable from the second week post-induction, aiding in early CRC detection. BACKGROUND: • The study provides a basis for 3D autofluorescence characterization in colorectal tissue from dysplasia to cancer, although variability in autofluorescence limits data systematization during cancer progression.


Colorectal Neoplasms , Microscopy , Animals , Mice , Disease Models, Animal , Azoxymethane , Biopsy , Colorectal Neoplasms/diagnostic imaging
17.
Langenbecks Arch Surg ; 409(1): 92, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467934

BACKGROUND: Posthepatectomy liver failure (PHLF) remains a life-threatening complication after hepatectomy. To reduce PHLF, a preoperative assessment of liver function is indispensable. For this purpose, 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT (MSPECT) can be used. The aim of the current study was to evaluate the predictive value of MSPECT for PHLF in patients with non-colorectal liver tumors (NCRLT) compared to patients with colorectal liver metastasis (CRLM) undergoing extended liver resection. METHODS: We included all patients undergoing extended liver resections via two-stage procedures between January 2019 and December 2021 at the University Medical Center Hamburg-Eppendorf, Germany. All patients received a preoperative MSPECT. RESULTS: Twenty patients were included. In every fourth patient, PHLF was observed. Four patients had PHLF grade C. There were no differences between patients with CRLM and NCRLT regarding PHLF rate and future liver remnant (FLR) volume. Patients with CRLM had higher mebrofenin uptake in the FLR compared to those with NCRLT (2.49%/min/m2 vs. 1.51%/min/m2; p = 0.004). CONCLUSION: Mebrofenin uptake in patients with NCRLT was lower compared to those patients with CRLM. However, there was no difference in the PHLF rate and FLR volume. Cut-off values for the mebrofenin uptake might need adjustments for different surgical indications, surgical procedures, and underlying diseases.


Aniline Compounds , Colorectal Neoplasms , Glycine , Liver Failure , Liver Neoplasms , Humans , Radiopharmaceuticals , Liver/diagnostic imaging , Liver/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Hepatectomy/adverse effects , Liver Failure/etiology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/surgery , Colorectal Neoplasms/complications , Retrospective Studies , Postoperative Complications
18.
Clin Nucl Med ; 49(5): 475-477, 2024 May 01.
Article En | MEDLINE | ID: mdl-38465959

ABSTRACT: A 67-year-old woman, previously diagnosed with pulmonary sarcoidosis and sigmoid colon mucinous adenocarcinoma with pulmonary metastasis, showed an enlarged pulmonary nodule in routine follow-up. Because of the absence of treatment for either condition over the past 3 years, the nodule raised concerns of cancer recurrence or sarcoidosis progression. Its distinctive 18 F-FDG PET/CT appearance, compared with other pulmonary lesions, suggested a mucinous histology. The diagnosis was confirmed by pathological examination. This emphasizes the importance of knowledge of the 18 F-FDG PET/CT phenotype of neoplastic histological variants to address challenging diagnostic scenarios.


Adenocarcinoma, Mucinous , Colonic Neoplasms , Colorectal Neoplasms , Sarcoidosis , Female , Humans , Aged , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Neoplasm Recurrence, Local/diagnostic imaging , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Adenocarcinoma, Mucinous/diagnostic imaging
...